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Abstract

Enhancing targeting accuracy in social welfare programs can lift millions out of poverty without increasing costs. Advancements in this field harness
georeferenced data and leverage Al/machine learning (ML) to predict poverty and allocate aid. However, these models that are meant to solve data
sparsity are predominantly developed in countries with georeferenced national surveys and for geographic targeting. We demonstrate that micro-
targeting can be achieved in data-deficient contexts lacking ground truth. Using the case of Brazzaville in Congo, we leverage intuitive multimodal data to
predict multidimensional poverty at the household level. Our ML-based targeting improves traditional methods based on error metrics, targeting errors,
and distribution-sensitive poverty indices. Our spatially augmented model, surpassing status quo mechanisms, can promote inclusive social welfare
programs at granular levels.
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 Research Question: Do new georeferenced features, when . We construct the ground truth Multidimensional Poverty Index (MPI) based on

Social SafetyNet database in Congo Brazzaville and geolocate households.

combined with ML techniques, improve upon current
targeting methods?
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